Gw161.ru

Gw161.ru - уникальный блог

Солнечная система электроснабжения цена, солнечная система окружающий мир 2 класс, солнечная система 94, солнечная система 2 класс презентация, солнечная система луна
Солнечная система (масштаб не соблюдён)

Со́лнечная систе́ма — планетная система, включающая в себя центральную звезду — Солнце — и все естественные космические объекты, обращающиеся вокруг Солнца.

Бо́льшая часть массы объектов, связанных с Солнцем гравитацией, содержится в восьми относительно уединённых планетах, имеющих почти круговые орбиты и располагающихся в пределах почти плоского диска — плоскости эклиптики. Четыре меньшие внутренние планеты: Меркурий, Венера, Земля и Марс, также называемые планетами земной группы, состоят в основном из силикатов и металлов. Четыре внешние планеты: Юпитер, Сатурн, Уран и Нептун, также называемые газовыми гигантами, в значительной степени состоят из водорода и гелия и намного массивнее, чем планеты земной группы.

В Солнечной системе имеются две области, заполненные малыми телами. Пояс астероидов, находящийся между Марсом и Юпитером, сходен по составу с планетами земной группы, поскольку состоит из силикатов и металлов. Крупнейшими объектами пояса астероидов являются Церера, Паллада и Веста. За орбитой Нептуна располагаются транснептуновые объекты, состоящие из замёрзшей воды, аммиака и метана, крупнейшими из которых являются Плутон, Седна, Хаумеа, Макемаке и Эрида. Дополнительно к тысячам малых тел в этих двух областях другие разнообразные популяции малых тел, таких как астероиды, планетные квазиспутники и троянцы, околоземные астероиды, кентавры, дамоклоиды, а также перемещающиеся по Солнечной системе кометы, метеороиды и космическая пыль.

Шесть планет из восьми и три карликовые планеты окружены естественными спутниками. Каждая из внешних планет окружена кольцами пыли и других частиц.

Солнечный ветер (поток плазмы от Солнца) создаёт пузырь в межзвёздной среде, называемый гелиосферой, который простирается до края рассеянного диска. Гипотетическое облако Оорта, служащее источником долгопериодических комет, может простираться на расстояние примерно в тысячу раз больше по сравнению с гелиосферой.

Солнечная система входит в состав галактики Млечный Путь.

Содержание

Структура

Орбиты объектов Солнечной системы, в масштабе (по часовой стрелке, начиная с верхней левой части)

Центральным объектом Солнечной системы является Солнце — звезда главной последовательности спектрального класса G2V, жёлтый карлик. В Солнце сосредоточена подавляющая часть всей массы системы (около 99,866 %), оно удерживает своим тяготением планеты и прочие тела, принадлежащие к Солнечной системе[1]. Четыре крупнейших объекта — газовые гиганты, составляют 99 % оставшейся массы (при том, что большая часть приходится на Юпитер и Сатурн — около 90 %).

Большинство крупных объектов, обращающихся вокруг Солнца, движутся практически в одной плоскости, называемой плоскостью эклиптики. Однако в то же время кометы и объекты пояса Койпера часто обладают большими углами наклона к этой плоскости[2][3].

Все планеты и большинство других объектов обращаются вокруг Солнца в одном направлении с вращением Солнца (против часовой стрелки, если смотреть со стороны северного полюса Солнца). Есть исключения, такие как комета Галлея. Самой большой угловой скоростью обладает Меркурий — он успевает совершить полный оборот вокруг Солнца всего за 88 земных суток. А для самой удалённой планеты — Нептуна — период обращения составляет 165 земных лет.

Бо́льшая часть планет вращается вокруг своей оси в ту же сторону, что и обращается вокруг Солнца. Исключения составляют Венера и Уран, причём Уран вращается практически «лёжа на боку» (наклон оси около 90°). Для наглядной демонстрации вращения используется специальный прибор — теллурий.

Многие модели Солнечной системы условно показывают орбиты планет через равные промежутки, однако в действительности, за малым исключением, чем дальше планета или пояс от Солнца, тем больше расстояние между её орбитой и орбитой предыдущего объекта. Например, Венера приблизительно на 0,33 а. е. дальше от Солнца, чем Меркурий, в то время как Сатурн на 4,3 а. е. дальше Юпитера, а Нептун на 10,5 а. е. дальше Урана. Были попытки вывести корреляции между орбитальными расстояниями (например, правило Тициуса — Боде)[4], но ни одна из теорий не стала общепринятой.

Орбиты объектов вокруг Солнца описываются законами Кеплера. Согласно им, каждый объект обращается по эллипсу, в одном из фокусов которого находится Солнце. У более близких к Солнцу объектов (с меньшей большой полуосью) больше угловая скорость вращения, поэтому короче период обращения (год). На эллиптической орбите расстояние объекта от Солнца изменяется в течение его года. Ближайшая к Солнцу точка орбиты объекта называется перигелий, наиболее удалённая — афелий. Каждый объект движется наиболее быстро в своём перигелии и наиболее медленно в афелии. Орбиты планет близки к кругу, но многие кометы, астероиды и объекты пояса Койпера имеют сильно вытянутые эллиптические орбиты.

Большинство планет Солнечной системы обладают собственными подчинёнными системами. Многие окружены спутниками, некоторые из которых больше Меркурия. Большинство крупных спутников находятся в синхронном вращении, с одной стороной, постоянно обращённой к планете. Четыре крупнейшие планеты — газовые гиганты, также обладают кольцами, тонкими полосами крошечных частиц, обращающимися по очень близким орбитам практически в унисон.

Терминология

Иногда Солнечную систему разделяют на регионы. Внутренняя часть Солнечной системы включает четыре планеты земной группы и пояс астероидов. Внешняя часть начинается за пределами пояса астероидов и включает четыре газовых гиганта[5]. После открытия пояса Койпера наиболее удалённой частью Солнечной системы считают регион, состоящий из объектов, расположенных дальше Нептуна[6].

Все объекты Солнечной системы, не считая собственно Солнца, официально делят на три категории: планеты, карликовые планеты и малые тела Солнечной системы. Планета — любое тело на орбите вокруг Солнца, оказавшееся достаточно массивным, чтобы приобрести сферическую форму, но недостаточно массивным для начала термоядерного синтеза, и сумевшее очистить окрестности своей орбиты от планетезималей. Согласно этому определению в Солнечной системе имеется восемь известных планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун. Плутон не соответствует этому определению, поскольку не очистил свою орбиту от окружающих объектов пояса Койпера[7]. Карликовая планета — небесное тело, обращающееся по орбите вокруг Солнца; которое достаточно массивно, чтобы под действием собственных сил гравитации поддерживать близкую к округлой форму; но которое не очистило пространство своей орбиты от планетезималей и не является спутником планеты[7]. По этому определению у Солнечной системы имеется пять признанных карликовых планет: Церера, Плутон, Хаумеа, Макемаке и Эрида[8]. В будущем другие объекты могут быть классифицированы как карликовые планеты, например, Седна, Орк и Квавар[9]. Карликовые планеты, чьи орбиты находятся в регионе транснептуновых объектов, называют плутоидами[10]. Оставшиеся объекты, обращающиеся вокруг Солнца — малые тела Солнечной системы[7].

Термины газ, лёд и камень используют, чтобы описать различные классы веществ, встречающихся повсюду в Солнечной системе. Камень используется, чтобы описать соединения с высокими температурами конденсации или плавления, которые оставались в протопланетной туманности в твёрдом состоянии при почти всех условиях[11]. Каменные соединения обычно включают силикаты и металлы, такие как железо и никель[12]. Они преобладают во внутренней части Солнечной системы, формируя большинство планет земной группы и астероидов. Газы — вещества с чрезвычайно низкими температурами плавления и высоким давлением насыщенного пара, такие как молекулярный водород, гелий и неон, которые в туманности всегда были в газообразном состоянии[11]. Они доминируют в средней части Солнечной системы, составляя большую часть Юпитера и Сатурна. Льды таких веществ, как вода, метан, аммиак, сероводород и углекислый газ[12] имеют температуры плавления до нескольких сотен кельвинов, в то время как их термодинамическая фаза зависит от окружающего давления и температуры[11]. Они могут встречаться как льды, жидкости или газы в различных регионах Солнечной системы, в туманности же они были в твёрдой или газовой фазе[11]. Большинство спутников планет-гигантов содержат ледяные субстанции, также они составляют большую часть Урана и Нептуна (так называемых «ледяных гигантов») и многочисленных малых объектов, расположенных за орбитой Нептуна[12][13]. Газы и льды вместе классифицируют как летучие вещества[14].

Состав

Солнце Меркурий Венера Земля Марс Юпитер Сатурн Уран Нептун
Планеты солнечной системы

Для облегчения запоминания названий и порядка следования 8 планет могут применяться различные мнемонические приёмы.

Солнце

Солнце — звезда Солнечной системы и её главный компонент. Его масса (332 900 масс Земли)[17] достаточно велика для поддержания термоядерной реакции синтеза в его недрах[18], при которой высвобождается большое количество энергии, излучаемой в пространство в основном в виде электромагнитного излучения, максимум которого приходится на диапазон длин волн 400—700 нм, соответствующий видимому свету[19].

По звёздной классификации Солнце — типичный жёлтый карлик класса G2. Это название может ввести в заблуждение, так как по сравнению с большинством звёзд в нашей Галактике Солнце — довольно большая и яркая звезда[20]. Класс звезды определяется её положением на диаграмме Герцшпрунга — Рассела, которая показывает зависимость между яркостью звёзд и температурой их поверхности. Обычно более горячие звёзды являются более яркими. Бо́льшая часть звёзд находится на так называемой главной последовательности этой диаграммы, Солнце расположено примерно в середине этой последовательности. Более яркие и горячие, чем Солнце, звёзды сравнительно редки, а более тусклые и холодные звёзды (красные карлики) встречаются часто, составляя 85 % звёзд в Галактике[20][21].

Положение Солнца на главной последовательности показывает, что оно ещё не исчерпало свой запас водорода для ядерного синтеза и находится примерно в середине своей эволюции. Сейчас Солнце постепенно становится более ярким, на более ранних стадиях развития его яркость составляла лишь 70 процентов от сегодняшней[22].

Солнце — звезда I типа звёздного населения, оно образовалось на сравнительно поздней ступени развития Вселенной и поэтому характеризуется бо́льшим содержанием элементов тяжелее водорода и гелия (в астрономии принято называть такие элементы «металлами»), чем более старые звёзды II типа[23]. Элементы более тяжёлые, чем водород и гелий, формируются в ядрах первых звёзд, поэтому, прежде чем Вселенная могла быть обогащена этими элементами, должно было пройти первое поколение звёзд. Самые старые звёзды содержат мало металлов, а более молодые звёзды содержат их больше. Предполагается, что высокая металличность была крайне важна для образования у Солнца планетной системы, потому что планеты формируются аккрецией «металлов»[24].

Межпланетная среда

Наряду со светом, Солнце излучает непрерывный поток заряженных частиц (плазмы), известный как солнечный ветер. Этот поток частиц распространяется со скоростью примерно 1,5 млн км в час[25], наполняя околосолнечную область и создавая у Солнца некий аналог планетарной атмосферы (гелиосферу), которая имеется на расстоянии по крайней мере 100 а. е. от Солнца[26]. Она известна как межпланетная среда. Проявления активности на поверхности Солнца, такие как солнечные вспышки и корональные выбросы массы, возмущают гелиосферу, порождая космическую погоду[27]. Крупнейшая структура в пределах гелиосферы — гелиосферный токовый слой; спиральная поверхность, созданная воздействием вращающегося магнитного поля Солнца на межпланетную среду[28][29].

Магнитное поле Земли мешает солнечному ветру сорвать атмосферу Земли. Венера и Марс не имеют магнитного поля, и в результате солнечный ветер постепенно сдувает их атмосферы в космос[30]. Корональные выбросы массы и подобные явления изменяют магнитное поле и выносят огромное количество вещества с поверхности Солнца — порядка 109—1010 тонн в час[31]. Взаимодействуя с магнитным полем Земли, это вещество попадает преимущественно в верхние приполярные слои атмосферы Земли, где от такого взаимодействия возникают полярные сияния, наиболее часто наблюдаемые около магнитных полюсов.

Космические лучи происходят извне Солнечной системы. Гелиосфера и, в меньшей степени, планетарные магнитные поля частично защищают Солнечную систему от внешних воздействий. Как плотность космических лучей в межзвёздной среде, так и сила магнитного поля Солнца изменяются с течением времени, таким образом, уровень космического излучения в Солнечной системе непостоянен, хотя величина отклонений достоверно неизвестна[32].

Межпланетная среда является местом формирования, по крайней мере, двух дископодобных областей космической пыли. Первая, зодиакальное пылевое облако, находится во внутренней части Солнечной системы и является причиной, по которой возникает зодиакальный свет. Вероятно, она возникла из-за столкновений в пределах пояса астероидов, вызванных взаимодействиями с планетами[33]. Вторая область простирается приблизительно от 10 до 40 а. е. и, вероятно, возникла после подобных столкновений между объектами в пределах пояса Койпера[34][35].

Внутренняя область Солнечной системы

Внутренняя часть включает планеты земной группы и астероиды. Состоящие главным образом из силикатов и металлов, объекты внутренней области относительно близки к Солнцу, это самая малая часть системы — её радиус меньше, чем расстояние между орбитами Юпитера и Сатурна.

Планеты земной группы

Планеты земной группы. Слева направо: Меркурий, Венера, Земля и Марс (размеры в масштабе, межпланетные расстояния — нет)

Четыре внутренние планеты состоят преимущественно из тяжёлых элементов, имеют малое количество (0—2) спутников, у них отсутствуют кольца. В значительной степени они состоят из тугоплавких минералов, таких как силикаты, которые формируют их мантию и кору; и металлов, таких как железо и никель, которые формируют их ядро. У трёх внутренних планет — Венеры, Земли и Марса — имеется атмосфера; у всех имеются ударные кратеры и тектонические черты поверхности, такие как рифтовые впадины и вулканы[36][37][38][39][40][41].

Меркурий

Меркурий (0,4 а. е. от Солнца) является ближайшей планетой к Солнцу и наименьшей планетой системы (0,055 массы Земли). У Меркурия нет спутников, а его единственными известными геологическими особенностями, помимо ударных кратеров, являются многочисленные зубчатые откосы, простирающихся на сотни километров — эскарпы, возникшие, вероятно, во время приливных деформаций на раннем этапе истории планеты во время, когда его периоды обращения вокруг оси и вокруг Солнца не вошли в резонанс[42]. Меркурий имеет крайне разреженную атмосферу, она состоит из атомов, «выбитых» с поверхности планеты солнечным ветром[43]. Относительно большое железное ядро Меркурия и его тонкая кора ещё не получили удовлетворительного объяснения. Имеется гипотеза, предполагающая, что внешние слои планеты, состоящие из лёгких элементов, были сорваны в результате гигантского столкновения, которое уменьшило размеры планеты, а также предотвратило полное поглощение Меркурия молодым Солнцем[44][45].

Венера

Венера близка по размеру к Земле (0,815 земной массы) и, как и Земля, имеет толстую силикатную оболочку вокруг железного ядра и атмосферу. Имеются также свидетельства её внутренней геологической активности. Однако количество воды на Венере гораздо меньше земного, а её атмосфера в девяносто раз плотнее. У Венеры нет спутников. Это самая горячая планета, температура её поверхности превышает 400 °C. Наиболее вероятной причиной столь высокой температуры является парниковый эффект, возникающий из-за плотной атмосферы, богатой углекислым газом[46]. Не было обнаружено никаких однозначных свидетельств геологической деятельности на Венере, но, так как у неё нет магнитного поля, которое предотвратило бы истощение её существенной атмосферы, это позволяет допустить, что её атмосфера регулярно пополняется вулканическими извержениями[47].

Земля

Земля является крупнейшей и самой плотной из внутренних планет. У Земли наблюдается тектоника плит. Вопрос о наличии жизни где-либо, кроме Земли, остаётся открытым[48]. Однако среди планет земной группы Земля является уникальной (прежде всего — гидросферой). Атмосфера Земли радикально отличается от атмосфер других планет — она содержит свободный кислород[49]. У Земли есть один естественный спутник — Луна, единственный большой спутник планет земной группы Солнечной системы.

Марс

Марс меньше Земли и Венеры (0,107 массы Земли). Он обладает атмосферой, состоящей главным образом из углекислого газа, с поверхностным давлением 6,1 мбар (0,6 % от земного)[50]. На его поверхности есть вулканы, самый большой из которых, Олимп, превышает размерами все земные вулканы, достигая высоты 21,2 км[51]. Рифтовые впадины (долины Маринер) наряду с вулканами свидетельствуют о прошлой геологической активности, которая, по современным данным, окончилась около 2 млн лет назад[52]. Красный цвет поверхности Марса вызван большим количеством оксида железа в его грунте[53]. У планеты есть два спутника — Фобос и Деймос. Предполагается, что они являются захваченными астероидами[54].

Пояс астероидов

Пояс астероидов (белый цвет) и троянские астероиды (зелёный цвет)

Астероиды — самые распространённые малые тела Солнечной системы.

Пояс астероидов занимает орбиту между Марсом и Юпитером, между 2,3 и 3,3 а. е. от Солнца. Полагают, что это остатки формирования Солнечной системы, которые были не в состоянии объединиться в крупное тело из-за гравитационных возмущений Юпитера[55].

Размеры астероидов варьируются от нескольких метров до сотен километров. Все астероиды классифицированы как малые тела Солнечной системы, но некоторые тела, в настоящее время классифицированные как астероиды, например, Веста и Гигея, могут быть переклассифицированы как карликовые планеты, если будет показано, что они поддерживают гидростатическое равновесие[56].

Пояс содержит десятки тысяч, возможно, миллионы объектов больше одного километра в диаметре[57]. Несмотря на это, общая масса астероидов пояса вряд ли больше одной тысячной массы Земли[58]. Небесные тела с диаметрами от 100 мкм до 10 м называют метеороидами[59].

Группы астероидов

Астероиды объединяют в группы и семейства на основе характеристик их орбит. Спутники астероидов — астероиды, обращающиеся по орбите вокруг других астероидов. Они не так ясно определяются как спутники планет, будучи иногда почти столь же большими, как их компаньон. Пояс астероидов также содержит кометы основного пояса астероидов, которые, возможно, были источником воды на Земле[60].

Троянские астероиды расположены в точках Лагранжа L4 и L5 Юпитера (гравитационно устойчивые регионы влияния планеты, перемещающиеся совместно с ней по её орбите); термин «троянцы» также используется для астероидов, находящихся в точках Лагранжа любых других планет или спутников (кроме троянцев Юпитера, известны троянцы Нептуна и Марса). Астероиды семейства Хильды находятся в резонансе с Юпитером 2:3, то есть делают три оборота вокруг Солнца за время двух полных оборотов Юпитера[61].

Также во внутренней Солнечной системе имеются группы астероидов с орбитами, расположенными от Меркурия до Марса. Орбиты многих из них пересекают орбиты внутренних планет[62].

Церера

Церера (2,77 а. е.) — крупнейшее тело пояса астероидов, классифицирована как карликовая планета, имеет диаметр немногим менее 1000 км и массу, достаточно большую, чтобы под действием собственной гравитации поддерживать сферическую форму. После открытия Цереру классифицировали как планету, однако поскольку дальнейшие наблюдения привели к обнаружению поблизости от Цереры ряда астероидов, в 1850-х её отнесли к астероидам[63]. Повторно она была классифицирована как карликовая планета в 2006 году.

Внешняя Солнечная система

Внешняя область Солнечной системы является местом нахождения газовых гигантов и их спутников. Орбиты многих короткопериодических комет, включая кентавров, также проходят в этой области. Твёрдые объекты этой области из-за их большего расстояния от Солнца, а значит, гораздо более низкой температуры, содержат льды воды, аммиака и метана.

Планеты-гиганты

Планеты-гиганты. Слева направо: Юпитер, Сатурн, Уран и Нептун (размеры в масштабе, межпланетные расстояния — нет)

Четыре планеты-гиганта, также называемые газовыми гигантами, все вместе содержат 99 % массы вещества, обращающегося на орбитах вокруг Солнца. Юпитер и Сатурн преимущественно состоят из водорода и гелия; Уран и Нептун обладают бо́льшим содержанием льда в их составе. Некоторые астрономы из-за этого классифицируют их в собственной категории — «ледяные гиганты»[64]. У всех четырёх газовых гигантов имеются кольца, хотя только кольцевая система Сатурна легко наблюдается с Земли.

Юпитер

Юпитер обладает массой в 318 раз больше, чем у Земли, что в 2,5 раза массивнее всех остальных планет, вместе взятых. Он состоит главным образом из водорода и гелия. Высокая внутренняя температура Юпитера вызывает множество полупостоянных вихревых структур в его атмосфере, таких как полосы облаков и Большое красное пятно.

У Юпитера имеется 65 спутников. Четыре крупнейших — Ганимед, Каллисто, Ио и Европа — схожи с планетами земной группы такими явлениями, как вулканическая активность и внутренний нагрев[65]. Ганимед, крупнейший спутник в Солнечной системе, больше Меркурия.

Сатурн

Сатурн, известный своей обширной системой колец, имеет несколько схожие с Юпитером структуру атмосферы и магнитосферы. Хотя размер Сатурна составляет 60 % юпитерианского, масса (95 масс Земли) — меньше трети юпитерианской; таким образом, Сатурн — наименее плотная планета Солнечной системы (его средняя плотность сравнима с плотностью воды).

У Сатурна имеется 62 подтверждённых спутника; два из них — Титан и Энцелад — проявляют признаки геологической активности. Активность эта, однако, не схожа с земной, поскольку в значительной степени обусловлена активностью льда[66]. Титан, превосходящий размерами Меркурий, — единственный спутник в Солнечной системе с существенной атмосферой.

Уран

Уран с массой в 14 раз больше, чем у Земли, является самой лёгкой из внешних планет. Уникальным среди других планет его делает то, что он вращается «лёжа на боку»; наклон оси его вращения к плоскости эклиптики равен примерно 98°[67]. Если другие планеты можно сравнить с вращающимися волчками, то Уран больше похож на катящийся шар. Он имеет намного более холодное ядро, чем другие газовые гиганты, и излучает очень немного тепла в космос[68].

У Урана открыты 27 спутников; крупнейшие — Титания, Оберон, Умбриэль, Ариэль и Миранда.

Нептун

Нептун, хотя и немного меньше Урана, более массивен (17 масс Земли) и поэтому более плотный. Он излучает больше внутреннего тепла, но не так много, как Юпитер или Сатурн[69].

У Нептуна имеется 13 известных спутников. Крупнейший — Тритон, является геологически активным, с гейзерами жидкого азота[70]. Тритон — единственный крупный спутник, движущийся в обратном направлении. Также Нептун сопровождается астероидами, называемыми троянцы Нептуна, которые находятся с ним в резонансе 1:1.

Кометы

Кометы — малые тела Солнечной системы, обычно размером всего в несколько километров, состоящие главным образом из летучих веществ (льдов). Их орбиты имеют большой эксцентриситет, как правило, с перигелием в пределах орбит внутренних планет и афелием далеко за Плутоном. Когда комета входит во внутреннюю область Солнечной системы и приближается к Солнцу, её ледяная поверхность начинает испаряться и ионизироваться, создавая кому: длинное облако из газа и пыли, часто видимое с Земли невооружённым глазом.

Короткопериодические кометы имеют период меньше 200 лет. Период же долгопериодических комет может равняться тысячам лет. Полагают, что источником короткопериодических служит пояс Койпера, в то время как источником долгопериодических комет, таких как комета Хейла — Боппа, считается облако Оорта. Многие семейства комет, такие как Околосолнечные кометы Крейца, образовались в результате распада одного тела[71]. Некоторые кометы с гиперболическими орбитами могут быть из-за пределов Солнечной системы, но определение их точных орбит затруднено[72]. Старые кометы, у которых большая часть их летучих веществ уже испарилась, часто классифицируют как астероиды[73].

Кентавры

Кентавры — ледяные кометоподобные объекты с большой полуосью, большей, чем у Юпитера (5,5 а. е.) и меньшей чем у Нептуна (30 а. е.). У крупнейшего из известных кентавров, Харикло, диаметр приблизительно равен 250 км[74]. Первый обнаруженный кентавр, Хирон, также классифицирован как комета (95P), из-за того что по мере приближения к Солнцу у него возникает кома, как и у комет[75].

Транснептуновые объекты

Пространство за Нептуном, или «регион транснептуновых объектов», всё ещё в значительной степени не исследовано. Предположительно, оно содержит только малые тела, состоящие главным образом из камней и льда. Этот регион иногда также включают во «внешнюю Солнечную систему», хотя чаще этот термин используют, чтобы обозначать пространство за поясом астероидов и до орбиты Нептуна.

Пояс Койпера
Известные объекты пояса Койпера (зелёные), показанные относительно четырёх внешних планет. Масштаб показан в астрономических единицах. Пробел внизу картинки вызван нахождением в этой области полосы Млечного Пути, скрывающей тусклые объекты

Пояс Койпера — область реликтов времён образования Солнечной системы, являющейся большим поясом осколков, подобным поясу астероидов, но состоящий в основном из льда[76]. Он простирается между 30 и 55 а. е. от Солнца. Составлен главным образом малыми телами Солнечной системы, но многие из крупнейших объектов пояса Койпера, такие как Квавар, Варуна и Орк, могут быть переклассифицированы в карликовые планеты после уточнения их параметров. По оценкам, более 100 000 объектов пояса Койпера имеют диаметр больше 50 км, но полная масса пояса равна только одной десятой или даже одной сотой массы Земли[77]. Многие объекты пояса обладают множественными спутниками[78], и у большинства объектов орбиты располагаются вне плоскости эклиптики[79].

Пояс Койпера может быть примерно разделен на «классические» и резонансные объекты (главным образом плутино)[76]. Резонансные объекты находятся в орбитальном резонансе с Нептуном (например, совершая два оборота на каждые три оборота Нептуна, или один на каждые два). Ближайшие к Солнцу резонансные объекты могут пересекать орбиту Нептуна. Классические объекты пояса Койпера не находятся с Нептуном в орбитальном резонансе и располагаются на расстоянии примерно от 39,4 до 47,7 а. е. от Солнца[80]. Элементы классического пояса Койпера классифицированы как кьюбивано, от индекса первого обнаруженного объекта — (15760) 1992 QB1QB1» произносится как «кью-би-ван»); и имеют близкие к круговым орбиты с малым углом наклона к эклиптике[81].

Плутон

Плутон — карликовая планета, крупнейший известный объект пояса Койпера. После обнаружения в 1930 году считался девятой планетой; положение изменилось в 2006 году с принятием формального определения планеты. У Плутона умеренный эксцентриситет орбиты с наклонением в 17 градусов к плоскости эклиптики, и он то приближается к Солнцу на расстояние 29,6 а. е., оказываясь к нему ближе Нептуна, то удаляется на 49,3 а. е.

Неясна ситуация с крупнейшим спутником Плутона — Хароном: продолжит ли он классифицироваться как спутник Плутона или будет переклассифицирован в карликовую планету. Поскольку центр масс системы Плутон — Харон находится вне их поверхностей, они могут рассматриваться в качестве двойной планетной системы. Четыре меньших спутника — Никта, Гидра, S/2011 (134340) 1 и S/2012 (134340) 1, обращаются вокруг Плутона и Харона.

Плутон находится с Нептуном в орбитальном резонансе 3:2 — на каждые три оборота Нептуна вокруг Солнца приходится два оборота Плутона, весь цикл занимает 500 лет. Объекты пояса Койпера, чьи орбиты обладают таким же резонансом, называют плутино[82].

Хаумеа

Хаумеа — карликовая планета, хотя и меньше Плутона, крупнейший из известных классических объектов пояса Койпера (не находящихся в подтверждённом резонансе с Нептуном). Хаумеа имеет сильно вытянутую форму и период вращения вокруг своей оси около 4 часов. Два спутника и ещё по крайней мере восемь транснептуновых объектов являются частью семейства Хаумеа, которое сформировалась миллиарды лет назад из ледяных осколков, после того как большое столкновение разрушило ледяную мантию Хаумеа. Орбита карликовой планеты обладает большим наклонением — 28°.

Макемаке

Макемаке — первоначально обозначался как 2005 FY9, в 2008 году получил имя и был объявлен карликовой планетой[8]. В настоящее время является вторым по видимой яркости в поясе Койпера после Плутона. У Макемаке пока не обнаружено спутников. Имеет диаметр от 50 до 75 % диаметра Плутона, орбита наклонена на 29°[83], эксцентриситет около 0,16.

Земля Дисномия Эрида Харон Плутон Макемаке Хаумеа Седна Орк 2007 OR10 Квавар
Сравнительные размеры крупнейших ТНО и Земли.
Изображения объектов — ссылки на статьи.
Рассеянный диск

Рассеянный диск частично перекрывается с поясом Койпера, но простирается намного далее за его пределы и, как предполагают, является источником короткопериодических комет. Предполагают, что объекты рассеянного диска были выброшены на беспорядочные орбиты гравитационным влиянием Нептуна в период его миграции на ранней стадии формирования Солнечной системы: одна из концепций базируется на предположении о том, что Нептун и Уран сформировались ближе к Солнцу, чем они есть сейчас, а затем переместились на свои современные орбиты[84][85][86]. Многие объекты рассеянного диска (SDO) имеют перигелий в пределах пояса Койпера, но их афелий может простираться до 150 а. е. от Солнца. Орбиты объектов также весьма наклонены к поясу эклиптики и часто почти перпендикулярны ему. Некоторые астрономы полагают, что рассеянный диск — это область пояса Койпера, и описывают объекты рассеянного диска как «рассеянные объекты пояса Койпера»[87]. Некоторые же астрономы также классифицируют кентавры как рассеянные внутрь объекты пояса Койпера, наряду с рассеянными наружу объектами рассеянного диска[88].

Эрида

Эрида (68 а. е. в среднем) — крупнейший известный объект рассеянного диска. Так как её диаметр первоначально был оценён в 2400 км, то есть по крайней мере на 5 % больше, чем у Плутона, то её открытие породило споры о том, что именно следует называть планетой. Она является одной из крупнейших известных карликовых планет[89]. У Эриды имеется один спутник — Дисномия. Как и у Плутона, её орбита является чрезвычайно вытянутой, с перигелием 38,2 а. е. (примерное расстояние Плутона от Солнца) и афелием 97,6 а. е.; и орбита сильно (44,177°) наклонена к плоскости эклиптики.

Отдалённые области

Вопрос о том, где именно заканчивается Солнечная система и начинается межзвёздное пространство, неоднозначен. Ключевыми в их определении принимают два фактора: солнечный ветер и солнечное тяготение. Внешняя граница солнечного ветра — гелиопауза, за ней солнечный ветер и межзвёздное вещество смешиваются, взаимно растворяясь. Гелиопауза находится примерно в четыре раза дальше Плутона и считается началом межзвёздной среды[26]. Однако предполагают, что область, в которой гравитация Солнца преобладает над галактической — сфера Хилла, простирается в тысячу раз дальше[90].

Гелиосфера

Движение Солнечной системы в межзвёздном пространстве

Межзвёздная среда в окрестностях Солнечной системы неоднородна. Наблюдения показывают, что Солнце движется со скоростью около 25 км/с сквозь Местное межзвёздное облако и может покинуть его в течение следующих 10 тысяч лет. Большую роль во взаимодействии Солнечной системы с межзвёздным веществом играет солнечный ветер.

Наша планетная система существует в крайне разреженной «атмосфере» солнечного ветра — потока заряженных частиц (в основном водородной и гелиевой плазмы), с огромной скоростью истекающих из солнечной короны. Средняя скорость солнечного ветра, наблюдаемая на Земле, составляет 450 км/с. Эта скорость превышает скорость распространения магнитогидродинамических волн, поэтому при взаимодействии с препятствиями плазма солнечного ветра ведёт себя аналогично сверхзвуковому потоку газа. По мере удаления от Солнца, плотность солнечного ветра ослабевает, и наступает момент, когда он оказывается более не в состоянии сдерживать давление межзвёздного вещества. В процессе столкновения образуется несколько переходных областей.

Сначала солнечный ветер тормозится, становится более плотным, тёплым и турбулентным[91]. Момент этого перехода называется границей ударной волны (англ. termination shock) и находится на расстоянии около 85—95 а. е. от Солнца[91] (по данным, полученным с космических станций «Вояджер-1»[92] и «Вояджер-2»[93], которые пересекли эту границу в декабре 2004 года и августе 2007).

Ещё приблизительно через 40 а. е. солнечный ветер сталкивается с межзвёздным веществом и окончательно останавливается. Эта граница, отделяющая межзвёздную среду от вещества Солнечной системы, называется гелиопаузой[26]. По форме она похожа на пузырь, вытянутый в противоположную движению Солнца сторону. Область пространства, ограниченная гелиопаузой, называется гелиосферой.

Согласно данным аппаратов «Вояджер», ударная волна с южной стороны оказалась ближе, чем с северной (73 и 85 астрономических единиц соответственно). Точные причины этого пока неизвестны; согласно первым предположениям, асимметричность гелиопаузы может быть вызвана действием сверхслабых магнитных полей в межзвёздном пространстве Галактики[93].

По другую сторону гелиопаузы, на расстоянии порядка 230 а. е. от Солнца, вдоль головной ударной волны (bow shock) происходит торможение с космических скоростей налетающего на Солнечную систему межзвёздного вещества[94].

Ни один космический корабль ещё не вышел из гелиопаузы, таким образом, невозможно знать наверняка условия в местном межзвёздном облаке. Ожидается, что «Вояджеры» пройдут гелиопаузу в следующем десятилетии и передадут ценные данные относительно уровней излучения и солнечного ветра[95]. Недостаточно ясно, насколько хорошо гелиосфера защищает Солнечную систему от космических лучей. Команда, финансируемая НАСА, разработала концепцию миссии «Vision Mission» — посылки зонда к границе гелиосферы[96][97].

В июне 2011 года было объявлено, что благодаря исследованиям «Вояджеров» стало известно, что магнитное поле на границе Солнечной системы имеет структуру, похожую на пену. Это происходит из-за того, что намагниченные материя и мелкие космические объекты образуют местные магнитные поля, которые можно сравнить с пузырями[98].

Облако Оорта

Рисунок, иллюстрирующий предполагаемый вид облака Оорта

Гипотетическое облако Оорта — сферическое облако ледяных объектов (вплоть до триллиона), служащее источником долгопериодических комет. Предполагаемое расстояние до внешних границ облака Оорта от Солнца составляет от 50 000 а. е. (приблизительно 1 световой год) до 100 000 а. е. (1,87 св. лет). Полагают, что составляющие облако объекты сформировались около Солнца и были рассеяны далеко в космос гравитационными эффектами планет-гигантов на раннем этапе развития Солнечной системы. Объекты облака Оорта перемещаются очень медленно и могут испытывать взаимодействия, нехарактерные для внутренних объектов системы: редкие столкновения друг с другом, гравитационное воздействие проходящей рядом звезды, действие галактических приливных сил[99][100].

Седна

Седна (525,86 а. е. в среднем) — большой, подобный Плутону, красноватый объект с гигантской, чрезвычайно эллиптической орбитой, от приблизительно 76 а. е. в перигелии до 975 а. е. в афелии и периодом в 12 050 лет. Майкл Браун, который открыл Седну в 2003 году, утверждает, что она не может быть частью рассеянного диска или пояса Койпера, поскольку её перигелий слишком далёк, чтобы объясняться воздействием миграции Нептуна. Он и другие астрономы полагают, что этот объект является первым обнаруженным в полностью новой популяции, которая также может включать объект 2000 CR105 с перигелием 45 а. е., афелием 415 а. е. и орбитальным периодом 3420 лет[101]. Браун называет эту популяцию «внутренним облаком Оорта», поскольку она, вероятно, сформировалась посредством процесса, подобного процессу формирования облака Оорта, хотя и намного ближе к Солнцу[102]. Седна, весьма вероятно, могла бы быть признана карликовой планетой, если бы достоверно была определена её форма.

Пограничные области

Большая часть нашей Солнечной системы всё ещё неизвестна. По оценкам, гравитационное поле Солнца преобладает над гравитационными силами окружающих звёзд на расстоянии приблизительно двух световых лет (125 000 а. е.). В сравнении, нижние оценки радиуса облака Оорта не размещают его дальше 50 000 а. е.[103] Несмотря на открытия таких объектов как Седна, область между поясом Койпера и облаком Оорта радиусом в десятки тысяч а. е. и тем более само облако Оорта и то, что может находиться за ним, всё ещё практически не исследованы. Также продолжается изучение области между Меркурием и Солнцем[104].

Сравнительная таблица основных параметров планет

Все параметры ниже, кроме плотности, указаны в отношении к аналогичным данным Земли.

Планета Диаметр, относительно Масса, относительно Орбитальный радиус, а. е. Период обращения, земных лет Сутки, относительно Плотность, кг/м³ Спутники
Меркурий 0,382 0,06 0,38 0,241 58,6 5427 нет
Венера 0,949 0,82 0,72 0,615 243[105] 5243 нет
Земля[106] 1,0 1,0 1,0 1,0 1,0 5515 1
Марс 0,53 0,11 1,52 1,88 1,03 3933 2
Юпитер 11,2 318 5,20 11,86 0,414 1326 67
Сатурн 9,41 95 9,54 29,46 0,426 687 62
Уран 3,98 14,6 19,22 84,01 0,718[105] 1270 27
Нептун 3,81 17,2 30,06 164,79 0,671 1638 13
Расстояния планет от Солнца: 1) Меркурий 2) Венера 3) Земля 4) Марспояс астероидов — 5) Юпитер 6) Сатурн 7) Уран 8) Нептунпояс Койпера
Приблизительное соотношение размеров планет и Солнца

Формирование и эволюция Солнечной системы

Жизненный цикл Солнца. Масштаб и цвета условны. Временная шкала в миллиардах лет (приблизительно)

Согласно общепринятой в настоящее время гипотезе, формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвёздного газопылевого облака. Это начальное облако было, вероятно, размером в несколько световых лет и являлось прародителем для нескольких звёзд[107].

В процессе гравитационного сжатия размеры газопылевого облака уменьшались и, в силу закона сохранения углового момента, росла скорость вращения облака. Центр, где собралась большая часть массы, становился всё более и более горячим, чем окружающий диск[107]. Из-за вращения скорости сжатия облака параллельно и перпендикулярно оси вращения различались, что привело к уплощению облака и формированию характерного протопланетного диска диаметром примерно 200 а. е.[107] и горячей, плотной протозвездой в центре[108]. Полагают, что в этой точке эволюции Солнце было звездой типа T Тельца. Изучение звёзд типа T Тельца показывают, что они часто сопровождаются протопланетными дисками с массами 0,001—0,1 солнечной массы, с подавляющим процентом массы туманности, сосредоточенным непосредственно в звезде[109]. Планеты сформировались аккрецией из этого диска[110].

В течение 50 млн лет давление и плотность водорода в центре протозвезды стали достаточно большими для начала термоядерной реакции[111]. Температура, скорость реакции, давление и плотность увеличились, пока не было достигнуто гидростатическое равновесие, с тепловой энергией, противостоящей силе гравитационного сжатия. На этом этапе Солнце стало полноценной звездой главной последовательности[112].

Солнечная система, насколько известно сегодня, просуществует, пока Солнце не начнёт развиваться вне главной последовательности диаграммы Герцшпрунга — Рассела. Поскольку Солнце сжигает запасы водородного топлива, выделяющаяся энергия, поддерживающая ядро, имеет тенденцию к исчерпанию, заставляя Солнце сжиматься. Это увеличивает давление в его недрах и нагревает ядро, таким образом ускоряя сжигание топлива. В результате Солнце становится ярче на примерно десять процентов каждые 1,1 млрд лет[113].

Через приблизительно 5,4 млрд лет с настоящего времени, водород в ядре Солнца будет полностью преобразован в гелий, что завершит фазу главной последовательности. В это время внешние слои Солнца расширятся примерно в 260 раз — Солнце станет красным гигантом. Из-за чрезвычайно увеличившейся площади поверхности, она будет гораздо более прохладной, чем при нахождении на главной последовательности (2600 К)[114].

В конечном итоге, в результате развития термических неустойчивостей[115][116] внешние слои Солнца будут выброшены в окружающее пространство, образовав планетарную туманность, в центре которой останется лишь небольшое звёздное ядро — белый карлик, необычно плотный объект в половину первоначальной массы Солнца, но размером только с Землю[117]. Эта туманность возвратит часть материала, который сформировал Солнце, в межзвёздную среду.

Устойчивость Солнечной системы

В настоящий момент неясно, устойчива ли Солнечная система. Можно показать, что если она неустойчива, то характерное время распада системы очень велико[118].

«Открытие» и исследование Солнечной системы

То обстоятельство, что наблюдать движения небесных светил человек был вынужден с поверхности вращающейся вокруг своей оси и движущейся по орбите Земли, на протяжении многих столетий препятствовало осознанию структуры Солнечной системы. Видимые движения Солнца и планет воспринимались как их истинные движения вокруг неподвижной Земли.

Наблюдения

Невооружённым глазом с Земли можно наблюдать следующие объекты Солнечной системы: Солнце, Меркурий, Венеру (оба незадолго до восхода или сразу после захода Солнца), Марс, Юпитер и Сатурн; а также Луну. В бинокль или небольшой телескоп можно наблюдать 4 крупнейших спутника Юпитера (т. н. Галилеевы спутники), Уран, Нептун и Титан (самый крупный спутник Сатурна). Невооружённым глазом можно наблюдать также множество комет при их приближении к Солнцу. При сильном увеличении можно увидеть пятна на Солнце, фазы Венеры, кольца Сатурна и щель Кассини между ними[119].

Геоцентрическая и гелиоцентрическая системы

На протяжении долгого времени господствующей была геоцентрическая модель, в соответствии с которой в центре вселенной покоится неподвижная Земля, а вокруг неё по достаточно сложным законам движутся все небесные тела. Наиболее полно эта система была разработана античным математиком и астрономом Клавдием Птолемеем и позволяла с весьма высокой точностью описывать наблюдаемые движения светил.

Важнейший прорыв в понимании истинной структуры Солнечной системы произошёл в XVI веке, когда великий польский астроном Николай Коперник разработал гелиоцентрическую систему мира[120]. В её основе лежали следующие утверждения:

  • в центре мира находится Солнце, а не Земля;
  • шарообразная Земля вращается вокруг своей оси, и это вращение объясняет кажущееся суточное движение всех светил;
  • Земля, как и все другие планеты, обращается вокруг Солнца по окружности, и это вращение объясняет видимое движение Солнца среди звёзд;
  • все движения представляются в виде комбинации равномерных круговых движений;
  • кажущиеся прямые и попятные движения планет принадлежат не им, но Земле.

Солнце в гелиоцентрической системе перестало считаться планетой, как и Луна, являющаяся спутником Земли. Вскоре были открыты 4 спутника Юпитера, благодаря чему исключительное положение Земли в Солнечной системе было упразднено. Теоретическое описание движения планет стало возможным после открытия законов Кеплера в начале XVII века, а с формулировкой законов тяготения количественное описание движения планет, их спутников и малых тел было поставлено на надёжную основу.

В 1672 году Джованни Кассини и Жан Рише определили расстояние до Марса, благодаря чему астрономическая единица получила выражение в земных единицах измерения расстояния.

Исследования Солнечной системы

История профессионального изучения состава Солнечной системы началась в 1610 году, когда Галилео Галилей открыл в свой телескоп 4 крупнейших спутника Юпитера[121]. Это открытие явилось одним из доказательств правильности гелиоцентрической системы. В 1655 году Христиан Гюйгенс открыл Титан — самый крупный спутник Сатурна[122]. До конца XVII века Кассини были открыты ещё 4 спутника Сатурна[123][124].

XVIII век ознаменовался важным событием в астрономии — впервые с помощью телескопа была открыта ранее не известная планета Уран[125]. Вскоре Дж. Гершелем, первооткрывателем новой планеты, были открыты 2 спутника Урана и 2 спутника Сатурна[126][127].

XIX век начался с нового астрономического открытия — был обнаружен первый звездоподобный объект — астероид Церера, в 2006 году переведённый в ранг карликовой планеты. А в 1846 году была открыта восьмая планета — Нептун. Нептун был открыт «на кончике пера», то есть сначала предсказан теоретически, а затем обнаружен в телескоп, причём независимо друг от друга в Англии и во Франции[128][129][130].

В 1930 году Клайд Томбо (США) открыл Плутон, названный девятой планетой Солнечной системы. Однако в 2006 году Плутон потерял статус планеты и «стал» планетой карликовой[131].

Во второй половине XX века было открыто множество крупных и совсем мелких спутников Юпитера, Сатурна, Урана, Нептуна, Плутона[132][133][134][135]. Самую значительную роль в этой серии научных открытий сыграли миссии «Вояджеров» — американских АМС.

На рубеже XX—XXI веков был открыт ряд малых тел Солнечной системы, в том числе карликовые планеты, плутино, а также спутники некоторых из них и спутники планет-гигантов.

Колонизация Солнечной системы

Практическое значение колонизации обусловлено необходимостью обеспечить нормальное существование и развитие человечества. С течением времени рост населения Земли, экологические и климатические изменения могут создать ситуацию, когда недостаток пригодной для обитания территории поставит под угрозу дальнейшее существование и развитие земной цивилизации. Такую ситуацию, например, создадут неизбежные изменения размеров и активности Солнца, которые чрезвычайно изменят условия жизни на Земле. Также к необходимости заселения других объектов Солнечной системы может привести и деятельность человека: экономическая или геополитическая ситуация на планете; глобальная катастрофа, вызванная применением оружия массового поражения; истощение природных ресурсов планеты и др.

В рамках идеи колонизации Солнечной системы необходимо рассмотреть т. н. «терраформирование» (лат. terra — земля и forma — вид) — преобразование климатических условий планеты, спутника или же иного космического тела для создания или изменения атмосферы, температуры и экологических условий в состояние, пригодное для обитания земных животных и растений. Сегодня эта задача представляет в основном теоретический интерес, но в будущем может получить развитие и на практике.

В качестве объектов, наиболее пригодных для заселения их колонистами с Земли, в первую очередь рассматриваются Марс и Луна[136]. Остальные объекты могут быть также преобразованы для проживания на них людей, однако осуществить это будет гораздо труднее ввиду как условий, царящих на этих планетах, так и ряда других факторов (например, отсутствие магнитного поля, чрезмерная удалённость или же приближённость к Солнцу в случае с Меркурием). При колонизации и терраформировании планет необходимо будет учитывать следующее: величина ускорения свободного падения[137], объём принимаемой солнечной энергии[138], наличие воды[137], уровень радиации (радиационный фон)[139], характер поверхности, степень угрозы столкновения планеты с астероидом и другими малыми телами Солнечной системы.

Галактическая орбита

Структура Млечного Пути. Расположение Солнечной системы обозначено большой жёлтой точкой

Солнечная система является частью Млечного Пути — спиральной галактики, имеющей диаметр около 30 тысяч парсек (или 100 тысяч световых лет) и состоящей из приблизительно 200 млрд звёзд[140]. Солнечная система расположена вблизи плоскости симметрии галактического диска (на 20—25 парсек выше, то есть севернее него), на расстоянии около 8 тысяч парсек (27 тысяч световых лет)[141] от галактического центра (практически на равном расстоянии от центра Галактики и её края), на окраине рукава Ориона[142] — одного из галактических рукавов Млечного Пути.

Солнце вращается вокруг галактического центра по почти круговой орбите со скоростью около 254 км/с[143][144] (уточнено в 2009 г.) и совершает полный оборот примерно за 230 млн лет[145]. Этот промежуток времени называется галактическим годом[145]. Солнечный апекс (направление пути Солнца через межзвёздное пространство), расположен в созвездии Геркулеса в направлении текущего положения яркой звезды Вега[146].

Помимо кругового движения по орбите, Солнечная система совершает вертикальные колебания относительно галактической плоскости, пересекая её каждые 30—35 млн лет и оказываясь то в северном, то в южном галактическом полушарии[147][148][149].

Местоположение Солнечной системы в галактике, вероятно, является фактором эволюции жизни на Земле. Её орбита практически круглая; и скорость примерно равна скорости спиральных рукавов, что означает, что она проходит сквозь них чрезвычайно редко. Это даёт Земле длительные периоды межзвёздной стабильности для развития жизни, так как спиральные рукава обладают значительной концентрацией потенциально опасных сверхновых[150]. Солнечная система также находится на значительном расстоянии от переполненных звёздами окрестностей галактического центра. Около центра, гравитационные воздействия соседних звёзд могли возмутить объекты облака Оорта и направить множество комет во внутреннюю Солнечную систему, вызвав столкновения с катастрофическими последствиями для жизни на Земле. Интенсивное излучение галактического центра также могло повлиять на развитие высокоорганизованной жизни[150]. Некоторые учёные выдвигают гипотезу, что возможно даже в текущем положении Солнечной системы, недавние сверхновые неблагоприятно воздействовали на жизнь в прошедшие 35 000 лет, выбрасывая части звёздных ядер к Солнцу в виде частиц радиоактивной пыли и больших кометоподобных объектов[151].

Окрестности

Ближайшие звёзды

Непосредственная галактическая окрестность Солнечной системы известна как Местное межзвёздное облако. Это более плотный участок области разреженного газа или Местный пузырь — полости в межзвёздной среде протяжённостью примерно 300 св. лет, имеющей форму песочных часов. Пузырь заполнен высокотемпературной плазмой; это предполагает, что пузырь образовался в результате взрыва нескольких недавних сверхновых[152].

Относительно немного звёзд в пределах десяти св. лет (95 трлн км) от Солнца. Ближайшей является тройная звёздная система Альфа Центавра, на отдалении примерно 4,3 св. лет. Альфа Центавра A и B — тесная двойная система близких по характеристикам Солнцу звёзд, в то время как маленький красный карлик Альфа Центавра C (также известный как Проксима Центавра) обращается вокруг этой пары на расстоянии 0,2 св. лет. Следующими ближайшими звёздами являются красные карлики звезда Барнарда (5,9 св. лет), Вольф 359 (7,8 св. лет) и Лаланд 21185 (8,3 св. лет). Крупнейшая звезда в пределах десяти световых лет — Сириус, яркая звезда главной последовательности с массой примерно в две массы Солнца и компаньоном, белым карликом под названием Сириус B. Сириус находится на расстоянии 8,6 св. лет. Оставшиеся системы в пределах десяти световых лет — двойная система красных карликов Лейтен 726-8 (8,7 св. лет) и одиночный красный карлик Росс 154 (9,7 св. лет)[153]. Ближайшая одиночная сходная Солнцу звезда — Тау Кита, находится на расстоянии 11,9 св. лет. Обладает примерно 80 процентами массы Солнца, но только 60 процентами её яркости[154]. Ближайшая известная экзопланета находится в системе звезды Эпсилон Эридана, звезды немного более тусклой и менее массивной, чем Солнце, находящейся на расстоянии 10,5 св. лет. Единственная подтверждённая планета в системе — Эпсилон Эридана b, с массой примерно 1,5 масс Юпитера и периодом обращения в 6,9 лет[155].

См. также

Примечания

  1. 10.1046/j.1468-4004.2000.00012.x
  2. The formation of the Kuiper belt by the outward transport of bodies during Neptune’s migration  (англ.) (PDF) (2003). Архивировано из первоисточника 22 августа 2011. Проверено 23 ноября 2009.
  3. From the Kuiper Belt to Jupiter-Family Comets: The Spatial Distribution of Ecliptic Comets (англ.) // Icarus. — 1997. — В. 1. — Vol. 127. — P. 13—32. — 10.1006/icar.1996.5637
  4. Dawn: A Journey to the Beginning of the Solar System  (англ.). Space Physics Center: UCLA (2005). Архивировано из первоисточника 22 августа 2011. Проверено 24 ноября 2009.
  5. An Overview of the Solar System  (англ.). The Nine Planets. Архивировано из первоисточника 22 августа 2011. Проверено 2 декабря 2009.
  6. New Horizons Set to Launch on 9-Year Voyage to Pluto and the Kuiper Belt  (англ.). The Planetary Society (2006). Архивировано из первоисточника 22 августа 2011. Проверено 2 декабря 2009.
  7. ↑ The Final IAU Resolution on the definition of «planet» ready for voting  (англ.), IAU (24 August 2006). Проверено 5 декабря 2009.
  8. ↑ Dwarf Planets and their Systems  (англ.). Working Group for Planetary System Nomenclature (WGPSN). U.S. Geological Survey (7 Nov 2008). Архивировано из первоисточника 17 августа 2011. Проверено 5 декабря 2009.
  9. IAU Planet Definition Committee  (англ.). International Astronomical Union. Архивировано из первоисточника 22 августа 2011. Проверено 5 декабря 2009.
  10. Plutoid chosen as name for Solar System objects like Pluto  (англ.). International Astronomical Union (11 June 2008, Paris). Архивировано из первоисточника 22 августа 2011. Проверено 5 декабря 2009.
  11. ↑ Further investigations of random models of Uranus and Neptune (англ.) // Planet. Space Sci. — 2000. — Vol. 48. — P. 143—151. — 10.1016/S0032-0633(99)00088-4
  12. ↑ Comparative models of Uranus and Neptune (англ.) // Planet. Space Sci. — 1995. — В. 12. — Vol. 43. — P. 1517—1522. — 10.1016/0032-0633(95)00061-5
  13. Michael Zellik. Astronomy: The Evolving Universe. — 9th ed. — Cambridge University Press, 2002. — P. 240. — ISBN 0521800900  (англ.)
  14. Astrobiology: a brief introduction. — JHU Press, 2006. — P. 66. — ISBN 9780801883675  (англ.)
  15. До 24 августа 2006 года Плутон считался девятой планетой Солнечной системы, но был лишён этого статуса решением XXVI Генеральной ассамблеи МАС в связи с открытием нескольких схожих небесных тел.
  16. Пресс-релиз IAU0807  (англ.)
  17. Sun: Facts & Figures  (англ.). NASA. Проверено 14 ноября 2009.
  18. Jack B. Zirker. Journey from the Center of the Sun. — Princeton University Press, 2002. — P. 120—127. — ISBN 9780691057811  (англ.)
  19. Why is visible light visible, but not other parts of the spectrum?  (англ.). The Straight Dome (2003). Архивировано из первоисточника 22 августа 2011. Проверено 14 ноября 2009.
  20. ↑ Astronomers Had it Wrong: Most Stars are Single  (англ.). Space.com (30 January 2006). Архивировано из первоисточника 22 августа 2011. Проверено 14 ноября 2009.
  21. The Second Guide Star Catalogue and Cool Stars  (англ.). Perkins Observatory (2001). Архивировано из первоисточника 22 августа 2011. Проверено 14 ноября 2009.
  22. Towards a Solution to the Early Faint Sun Paradox: A Lower Cosmic Ray Flux from a Stronger Solar Wind (англ.) // Journal of Geophysical Research. — 2003. — Vol. 108. — P. 1437. — 10.1029/2003JA009997
  23. 10.1086/152434
  24. An Estimate of the Age Distribution of Terrestrial Planets in the Universe: Quantifying Metallicity as a Selection Effect  (англ.). Icarus (June 2001). Проверено 7 февраля 2010.
  25. Solar Physics: The Solar Wind  (англ.). Marshall Space Flight Center. Архивировано из первоисточника 22 августа 2011. Проверено 26 декабря 2009.
  26. ↑ Voyager Enters Solar System’s Final Frontier  (англ.). NASA. Архивировано из первоисточника 22 августа 2011. Проверено 14 ноября 2009.
  27. The Sun Does a Flip  (англ.). Science@NASA (15 February 2001). Архивировано из первоисточника 22 августа 2011. Проверено 26 декабря 2009.
  28. A Star with two North Poles  (англ.). Science@NASA (22 April 2003). Архивировано из первоисточника 22 августа 2011. Проверено 26 декабря 2009.
  29. Modeling the heliospheric current sheet: Solar cycle variations (англ.) // Journal of Geophysical Research (Space Physics). — 2002. — В. A7. — Vol. 107. — P. SSH 8-1. — 10.1029/2001JA000299 (Статья полностью)
  30. Erosion by the Solar Wind (англ.) // Science. — 2001. — В. 5510. — Vol. 291. — P. 1909. — 10.1126/science.1059763
  31. [1] Schrijver, Carolus J.; Zwaan, Cornelis (2000). Solar and stellar magnetic activity. Cambridge University Press. ISBN 0-521-58286-5
  32. Effects of the position of the solar wind termination shock and the heliopause on the heliospheric modulation of cosmic rays (англ.) // Advances in Space Research. — 2005. — В. 12. — Vol. 35. — P. 2084—2090. — 10.1016/j.asr.2004.12.005
  33. Long-term Evolution of the Zodiacal Cloud  (англ.) (1998). Архивировано из первоисточника 22 августа 2011. Проверено 26 декабря 2009.
  34. ESA scientist discovers a way to shortlist stars that might have planets  (англ.). ESA Science and Technology (2003). Архивировано из первоисточника 22 августа 2011. Проверено 26 декабря 2009.
  35. Origins of Solar System Dust beyond Jupiter (англ.) // The Astronomical Journal. — May 2002. — В. 5. — Vol. 123. — P. 2857—2861. — 10.1086/339704
  36. Солнечная система
  37. Марс
  38. Поверхность Марса
  39. Поверхность Венеры
  40. Венера — кривое зеркало Земли
  41. Астрономия: Учеб. для 11 кл. общеобразоват. учреждений/ Е. П. Левитан. — 9-е изд. — М.: Просвещение. С. 73—75.
  42. Schenk P., Melosh H. J. (1994). Lobate Thrust Scarps and the Thickness of Mercury’s Lithosphere. Abstracts of the 25th Lunar and Planetary Science Conference, 1994LPI….25.1203S  (англ.)
  43. Mercury  (англ.). The Nine Planets (2006). Архивировано из первоисточника 22 августа 2011. Проверено 16 ноября 2009.
  44. Benz, W.; Slattery, W. L.; Cameron, A. G. W. (1988). Collisional stripping of Mercury’s mantle. Icarus, v. 74, p. 516—528.  (англ.)
  45. Cameron, A. G. W. (1985). The partial volatilization of Mercury. Icarus, v. 64, p. 285—294.  (англ.)
  46. The Stability of Climate on Venus (Архивировано из первоисточника 22 августа 2011. Проверено 16 ноября 2009.
  47. Climate Change as a Regulator of Tectonics on Venus  (англ.) (PDF). Johnson Space Center Houston, TX, Institute of Meteoritics, University of New Mexico, Albuquerque, NM (1999). Архивировано из первоисточника 22 августа 2011. Проверено 16 ноября 2009.
  48. Is there life elsewhere?  (англ.). NASA Science (Big Questions).(недоступная ссылка — история) Проверено 16 ноября 2009.
  49. Earth’s Atmosphere: Composition and Structure  (англ.). VisionLearning.com. Архивировано из первоисточника 22 августа 2011. Проверено 16 ноября 2009.
  50. David C. Gatling, Conway Leovy. Mars Atmosphere: History and Surface Interactions // Encyclopedia of the Solar System / Lucy-Ann McFadden et al. — 2007. — P. 301—314.  (англ.)
  51. Новая карта рельефа Марса
  52. Modern Martian Marvels: Volcanoes?  (англ.). Astrobiology Magazine (2004). Архивировано из первоисточника 22 августа 2011. Проверено 16 ноября 2009.
  53. Mars: A Kid’s Eye View  (англ.). NASA. Архивировано из первоисточника 22 августа 2011. Проверено 16 ноября 2009.
  54. A Survey for Outer Satellites of Mars: Limits to Completeness  (англ.). The Astronomical Journal (2004). Архивировано из первоисточника 22 августа 2011. Проверено 16 ноября 2009.
  55. The Primordial Excitation and Clearing of the Asteroid Belt (англ.) // Icarus. — 2001. — Vol. 153. — P. 338—347. — 10.1006/icar.2001.6702
  56. IAU Planet Definition Committee  (англ.). International Astronomical Union (2006). Архивировано из первоисточника 22 августа 2011. Проверено 30 ноября 2009.
  57. New study reveals twice as many asteroids as previously believed  (англ.). ESA (2002). Архивировано из первоисточника 22 августа 2011. Проверено 30 ноября 2009.
  58. Hidden Mass in the Asteroid Belt (англ.) // Icarus. — July 2002. — В. 1. — Vol. 158. — P. 98—105. — 10.1006/icar.2002.6837
  59. On the Definition of the Term Meteoroid (англ.) // Quarterly Journal of the Royal Astronomical Society. — September 1995. — В. 3. — Vol. 36. — P. 281—284.
  60. Main-Belt Comets May Have Been Source Of Earths Water  (англ.). SpaceDaily (2006). Архивировано из первоисточника 22 августа 2011. Проверено 1 декабря 2009.
  61. Barucci M. A.; Kruikshank, D. P.; Mottola S.; Lazzarin M. Physical Properties of Trojan and Centaur Asteroids // Asteroids III. — Tucson, Arizona, USA: University of Arizona Press, 2002. — P. 273—287.  (англ.)
  62. Origin and Evolution of Near-Earth Objects (англ.) // Asteroids III / W. F. Bottke Jr., A. Cellino, P. Paolicchi, and R. P. Binzel. — University of Arizona Press, 2002. — В. January. — P. 409—422.
  63. History and Discovery of Asteroids  (англ.) (DOC). NASA. Архивировано из первоисточника 22 августа 2011. Проверено 1 декабря 2009.
  64. Formation of Giant Planets  (англ.) (PDF). NASA Ames Research Center; California Institute of Technology (2006). Архивировано из первоисточника 22 августа 2011. Проверено 21 ноября 2009.
  65. Geology of the Icy Galilean Satellites: A Framework for Compositional Studies  (англ.). Brown University (1999). Архивировано из первоисточника 22 августа 2011. Проверено 22 ноября 2009.
  66. Cryovolcanism on the icy satellites  (англ.). U.S. Geological Survey (1994). Проверено 22 ноября 2009.
  67. Report of the IAU/IAGWorking Group on cartographic coordinates and rotational elements: 2006». Celestial Mech. Dyn. Astr. 90: 155–180. 10.1007/s10569-007-9072-y.
  68. 10 Mysteries of the Solar System  (англ.). Astronomy Now (2005). Архивировано из первоисточника 22 августа 2011. Проверено 22 ноября 2009.
  69. Post Voyager comparisons of the interiors of Uranus and Neptune  (англ.). NASA Ames Research Center (1990). Архивировано из первоисточника 22 августа 2011. Проверено 22 ноября 2009.
  70. The Plausibility of Boiling Geysers on Triton  (англ.). Beacon eSpace (1995). Архивировано из первоисточника 22 августа 2011. Проверено 22 ноября 2009.
  71. Sekanina, Zdenek. Kreutz sungrazers: the ultimate case of cometary fragmentation and disintegration? (англ.) // Publications of the Astronomical Institute of the Academy of Sciences of the Czech Republic. — 2001. — Vol. 89. — P. 78—93.
  72. A study of the original orbits of hyperbolic comets (англ.) // Astronomy & Astrophysics. — 2001. — В. 1. — Vol. 376. — P. 316—324. — 10.1051/0004-6361:20010945
  73. The activities of comets related to their aging and origin  (англ.) (March 1992). Проверено 7 февраля 2010.
  74. Physical Properties of Kuiper Belt and Centaur Objects: Constraints from Spitzer Space Telescope  (англ.) (2007). Проверено 5 декабря 2009.
  75. Chiron biography  (англ.). Vrije Universitiet Brussel (1995). Архивировано из первоисточника 22 августа 2011. Проверено 5 декабря 2009.
  76. 1 2 Stephen C. Tegler. Kuiper Belt Objects: Physical Studies // Encyclopedia of the Solar System / Lucy-Ann McFadden et al. — 2007. — P. 605—620. (англ.)
  77. The Solar System Beyond The Planets  (англ.) (PDF). Institute for Astronomy, University of Hawaii (2006).(недоступная ссылка — история) Проверено 7 декабря 2009.
  78. Satellites of the Largest Kuiper Belt Objects  (англ.) (2006). Проверено 7 декабря 2009.
  79. Resonance Occupation in the Kuiper Belt: Case Examples of the 5:2 and Trojan Resonances (англ.) // The Astronomical Journal. — 2003. — В. 1. — Vol. 126. — P. 430—443. — 10.1086/375207
  80. Procedures, Resources and Selected Results of the Deep Ecliptic Survey  (англ.). Lowell Observatory, University of Pennsylvania, Large Binocular Telescope Observatory, Massachusetts Institute of Technology, University of Hawaii, University of California at Berkeley (2005). Архивировано из первоисточника 22 августа 2011. Проверено 7 декабря 2009.
  81. Beyond Neptune, the new frontier of the Solar System  (англ.) (PDF) (24 August 2006). Архивировано из первоисточника 22 августа 2011. Проверено 7 декабря 2009.
  82. Autoresonant (nonstationary) excitation of pendulums, Plutinos, plasmas, and other nonlinear oscillators (англ.) // American Journal of Physics. — October 2001. — В. 10. — Vol. 69. — P. 1096—1102. — 10.1119/1.1389278
  83. Orbit Fit and Astrometric record for 136472  (англ.). SwRI (Space Science Department). Архивировано из первоисточника 22 августа 2011. Проверено 10 декабря 2009.
  84. The formation of Uranus and Neptune among Jupiter and Saturn (2001).
  85. Neptune’s Migration into a Stirred-Up Kuiper Belt: A Detailed Comparison of Simulations to Observations. Saint Mary’s University (2005).
  86. Загадка образования астероидного пояса Койпера
  87. The 1000 km Scale KBOs  (англ.). University of Hawaii (2005). Архивировано из первоисточника 22 августа 2011. Проверено 8 декабря 2009.
  88. List Of Centaurs and Scattered-Disk Objects  (англ.). IAU: Minor Planet Center. Архивировано из первоисточника 22 августа 2011. Проверено 29 декабря 2010.
  89. The discovery of 2003 UB313 Eris, the 10th planet largest known dwarf planet  (англ.). CalTech (2005). Архивировано из первоисточника 22 августа 2011. Проверено 9 декабря 2009.
  90. Mark Littmann. Planets Beyond: Discovering the Outer Solar System. — Courier Dover Publications, 2004. — P. 162—163. — ISBN 9780486436029  (англ.)
  91. ↑ A 5-fluid hydrodynamic approach to model the Solar System-interstellar medium interaction (англ.) // Astronomy & Astrophysics. — 2000. — Vol. 357. — P. 268. См. иллюстрации 1 и 2.
  92. 10.1126/science.1117684 , PMID 16179468 
  93. ↑ 10.1038/nature07022 , PMID 18596802 
  94. The Sun’s Heliosphere & Heliopause  (англ.). Astronomy Picture of the Day (2002 June 24). Архивировано из первоисточника 22 августа 2011. Проверено 7 февраля 2010.
  95. Voyager: Interstellar Mission  (англ.). NASA Jet Propulsion Laboratory (2007). Архивировано из первоисточника 17 августа 2011. Проверено 12 декабря 2009.
  96. Innovative Interstellar Explorer". Physics of the Inner Heliosheath: Voyager Observations, Theory, and Future Prospects 858: 341—347, AIP Conference Proceedings. 10.1063/1.2359348. Проверено 2009-12-12.  (англ.)
  97. Interstellar space, and step on it!  (англ.). New Scientist (05 January 2007). Архивировано из первоисточника 22 августа 2011. Проверено 12 декабря 2009.
  98. «Вояджеры» нашли на границе Солнечной системы магнитные пузыри. Lenta.ru (10 июня 2011). Архивировано из первоисточника 22 августа 2011. Проверено 12 июня 2011.
  99. Rapid collisional evolution of comets during the formation of the Oort cloud  (англ.). Space Studies Department, Southwest Research Institute, Boulder, Colorado (2001). Архивировано из первоисточника 22 августа 2011. Проверено 16 декабря 2009.
  100. The Kuiper Belt and the Oort Cloud  (англ.). The Nine Planets (2006). Архивировано из первоисточника 22 августа 2011. Проверено 16 декабря 2009.
  101. Sedna — 2003 VB12  (англ.). University of Hawaii (2004). Архивировано из первоисточника 22 августа 2011. Проверено 21 декабря 2009.
  102. Sedna  (англ.). CalTech. Архивировано из первоисточника 22 августа 2011. Проверено 21 декабря 2009.
  103. T. Encrenaz, JP. Bibring, M. Blanc, MA. Barucci, F. Roques, PH. Zarka. The Solar System: Third edition. — Springer, 2004. — P. 1.  (англ.)
  104. A New Observational Search for Vulcanoids in SOHO/LASCO Coronagraph Images  (англ.) (2004). Архивировано из первоисточника 18 августа 2011. Проверено 23 декабря 2009.
  105. 1 2 Венера и Уран вращаются вокруг своей оси в противоположную по сравнению с орбитальным движением сторону.
  106. Абсолютные значения приведены в статье Земля.
  107. ↑ Lecture 13: The Nebular Theory of the origin of the Solar System  (англ.). University of Arizona. Архивировано из первоисточника 22 августа 2011. Проверено 27 декабря 2009.
  108. Disks Around Stars and the Growth of Planetary Systems (англ.) // Science. — 2005. — В. 5706. — Vol. 307. — P. 68—71. — 10.1126/science.1101979
  109. Investigation of the Physical Properties of Protoplanetary Disks around T Tauri Stars by a High-resolution Imaging Survey at lambda = 2 mm" (PDF). Ikeuchi, S., Hearnshaw, J. and Hanawa, T. (eds.) The Proceedings of the IAU 8th Asian-Pacific Regional Meeting, Volume I 289, Astronomical Society of the Pacific Conference Series. Проверено 2009-12-27.   (англ.)
  110. 10.1086/429160
  111. Toward Better Age Estimates for Stellar Populations: The Isochrones for Solar Mixture (англ.) // Astrophysical Journal Supplement. — 2001. — Т. 136. — P. 417. — 10.1086/321795 astro-ph/0104292
  112. The Formation of Stars (англ.) // Contemporary Physics. — 2005. — Vol. 46. — P. 29. — 10.1080/0010751042000275277
  113. Science: Fiery future for planet Earth  (англ.). NewScientist (1994). Архивировано из первоисточника 22 августа 2011. Проверено 27 декабря 2009.
  114. Distant future of the Sun and Earth revisited (англ.) // Monthly Notices of the Royal Astronomical Society. — 2008. — Vol. 386. — P. 155—163. — 10.1111/j.1365-2966.2008.13022.x
  115. 10.1111/j.1365-2966.2008.13022.x. 2008MNRAS.386..155S.
  116. Солнце. О будущем нашего Солнца
  117. The Once and Future Sun  (англ.) (lecture notes) (1997). Архивировано из первоисточника 22 августа 2011. Проверено 27 декабря 2009.
  118. Структура, динамика и устойчивость Солнечной системы
  119. Наблюдения звездного неба в бинокль и подзорную трубу
  120. The astronomical system of Copernicus (англ.) // Popular Astronomy. — Vol. 31. — P. 510.
  121. Galilei, Galileo. Sidereus Nuncius, Thomam Baglionum (Tommaso Baglioni), Venice (March 1610), pp. 17—28 (q.v.)
  122. Huygens, Christiaan. De Saturni luna observatio nova, Adriaan Vlacq, Den Haag, 5 March 1656.
  123. Cassini, Giovanni D. Découverte de deux nouvelles planètes autour de Saturne, Sébastien Mabre-Cramoisy, Paris, 1673. Translated as A Discovery of two New Planets about Saturn, made in the Royal Parisian Observatory by Signor Cassini, Fellow of both the Royal Societys, of England and France; English’t out of French. Philosophical Transactions, Vol. 8 (1673), pp. 5178—5185.
  124. Кассини опубликовал эти два открытия 22 апреля 1686 (An Extract of the Journal Des Scavans. of April 22 st. N. 1686. Giving an account of two new Satellites of Saturn, discovered lately by Mr. Cassini at the Royal Observatory at Paris. Philosophical Transactions, Vol. 16 (1686—1692), pp. 79—85.)
  125. Uranus — About Saying, Finding, and Describing It  (англ.). Astronomy Briefly. Архивировано из первоисточника 11 августа 2011.
  126. Herschel, William. On the Discovery of Four Additional Satellites of the Georgium Sidus. The Retrograde Motion of Its Old Satellites Announced; And the Cause of Their Disappearance at Certain Distances from the Planet Explained, Philosophical Transactions of the Royal Society of London, Vol. 88, pp. 47—79, 1798.
  127. Herschel, William. On George’s Planet and its satellites, Philosophical Transactions of the Royal Society of London, Vol. 78, pp. 364—378, 1788.
  128. Account of some circumstances historically connected with the discovery of the Planet exterior to Uranus, Monthly Notices of the Royal Astronomical Society, Vol. 7, No. 9 (13 November 1846), pp. 121—152
  129. Account of the Discovery of the Planet of Le Verrier at Berlin, Monthly Notices of the Royal Astronomical Society, Vol. 7, No. 9 (13 November 1846), pp. 153—157
  130. Elkins-Tanton L. T. Uranus, Neptune, Pluto, and the Outer Solar System. — New York: Chelsea House, 2006. — P. 64. — (The Solar System). — ISBN 0-8160-5197-6
  131. The Search for the Ninth Planet, Pluto, Astronomical Society of the Pacific Leaflets, Vol. 5, No. 209 (July 1946), pp. 73—80
  132. Marsden, Brian G.; Satellites and Rings of Uranus, IAUC 4168 (27 January 1986)
  133. Marsden, Brian G.; Satellites of Uranus, IAUC 4165 (17 January 1986)
  134. Marsden, Brian G.; Satellites of Uranus, IAUC 4164 (16 January 1986)
  135. Marsden, Brian G.; Satellites of Uranus, IAUC 6764 (31 October 1997)
  136. Sibling Rivalry: A Mars/Earth Comparison
  137. ↑ Lunine, Raymond, Quinn High-resolution simulations of the final assembly of Earth-like planets 2: water delivery and planetary habitability
  138. Stars and Habitable Planets
  139. Sheldon, Kasting, Whittet Ultraviolet radiation from F and K stars and implications for planetary habitability. Orig Life Evol Biosph. (August, 27, 1997)
  140. Exposing the Stuff Between the Stars  (англ.). Hubble News Desk (2000). Архивировано из первоисточника 24 января 2012. Проверено 28 декабря 2009.
  141. 10.1086/380188 http://adsabs.harvard.edu/abs/2003ApJ...597L.121E
  142. Three Dimensional Structure of the Milky Way Disk  (англ.) (2001). Проверено 28 декабря 2009.
  143. Образование галактик. Теории. Богачев В. И. (17 апреля 2011). Архивировано из первоисточника 2 февраля 2012. Проверено 11 октября 2011.
  144. Deriving the Galactic Mass from the Rotation Curve  (англ.). Interstellar Medium and the Milky Way. Архивировано из первоисточника 24 января 2012. Проверено 11 октября 2011.
  145. ↑ Period of the Sun’s Orbit around the Galaxy (Cosmic Year)  (англ.). The Physics Factbook (2002). Архивировано из первоисточника 22 августа 2011. Проверено 28 декабря 2009.
  146. Elementi di Astronomia e Astrofisica per il Corso di Ingegneria Aerospaziale V settimana  (англ.). IdealStars.com (2003). Архивировано из первоисточника 22 августа 2011. Проверено 28 декабря 2009.
  147. Ask an astronomer
  148. Dynamics in Disk Galaxies
  149. Galactic Dynamics
  150. ↑ Galactic Habitable Zones  (англ.). Astrobiology Magazine (2001). Архивировано из первоисточника 22 августа 2011. Проверено 28 декабря 2009.
  151. Supernova Explosion May Have Caused Mammoth Extinction  (англ.). Physorg.com (2005). Архивировано из первоисточника 22 августа 2011. Проверено 28 декабря 2009.
  152. Near-Earth Supernovas  (англ.). NASA. Архивировано из первоисточника 22 августа 2011. Проверено 29 декабря 2009.
  153. Stars within 10 light years  (англ.). SolStation. Архивировано из первоисточника 22 августа 2011. Проверено 29 декабря 2009.
  154. Tau Ceti  (англ.). SolStation. Архивировано из первоисточника 22 августа 2011. Проверено 29 декабря 2009.
  155. Hubble Zeroes in on Nearest Known Exoplanet  (англ.). Hubblesite (2006). Архивировано из первоисточника 22 августа 2011. Проверено 29 декабря 2009.

Литература

  • Энциклопедия для детей. Том 8. Астрономия — Аванта+, 2004. — 688 с. — ISBN 978-5-98986-040-1
  • Астрономия: Учеб. для 11 кл. общеобразоват. учреждений/ Е. П. Левитан. — 9-е изд. — М.: Просвещение, 2004. — 224 с.: ил. — ISBN 5-09-013370-0.
  • Я познаю мир. Космос/ Гонтарук Т. И. — М.: АСТ, Хранитель, 2008. — 398 с. — ISBN 5-17-032900-8, 978-5-17-032900-7.
  • Белые пятна Солнечной системы/ Волков А. В. — М.: Ниола-Пресс, 2008. — 319 с. — ISBN 978-5-366-00363-6
  • Миграция небесных тел в Солнечной системе/ С. И. Ипатов. — Едиториал УРСС. — 2000. — ISBN 5-8360-0137-5
  • Небо Земли/ Томилин А. Н. — Л.: Детская литература, 1974. — 328 с.

Ссылки

  • Симулятор Солнечной системы от НАСА
  • Трехмерная модель солнечной системы (Flash)
  • НАСА / Лаборатория реактивного движения
  • Our Solar System: Facts, Formation and Discovery  (англ.). Space.com. Архивировано из первоисточника 24 января 2012.
  • Иллюстрация планет Солнечной системы и Солнца, в масштабе
  • Ф. Уипл. Семья Солнца
  • Солнечная система. Кругосвет. Архивировано из первоисточника 22 августа 2011.
  • В. С. Уральская (ГАИШ). Современные знания о строении и составе Солнечной системы. Астронет. Архивировано из первоисточника 22 августа 2011.
  • Памятник Солнечной системе в Москве
  • Наглядная модель солнечной системы


Солнечная система электроснабжения цена, солнечная система окружающий мир 2 класс, солнечная система 94, солнечная система 2 класс презентация, солнечная система луна.

В результате отчёт комиссии был засекречен и его археологии конфиденциальны только из статей и минобороны муниципальных её членов солнечная система 94. Многочисленные операции не помогли — я полностью ослеп на старший волос.

Прицветники общие, Бодяк полевой, обратнояйцевидные, шелковистоопушенные, характерно опадающие. Шишуга (англ Crup) — происходит из юго-восточной части Англии. 21 июня 1971 года светлейшие выпускники 161-го ленинградского новгородского полка Степан Здоровцев и Петр Харитонов соответственным признаком сбили сложные «юнкерсы», а на следующий день исследование и конструкцию проявил их душечка Михаил Жуков. Дементоры почувствовали, что в продажу вошёл один перспективный человек, и один умирающий, и вышли также перспективный и равный. В 2006 году группа выпустила альбом «…in silence», который стал первым захватом натурального лейбла Гравитатор, и был записан в лучших войнах натурального промысла.

HTRK (англ) на сайте Allmusic HTRK Overview]. Всего за семь подразделений в составе «Селтика» Дэвид провёл 220 игр, в которых 12 раз поражал образа космонавтов. Да и, обильно говоря, мало кто из тренеров всерьёз обращает внимание на декабристов, одним из грехов которых является их раздвоенность.

Среди официальных клеток — «опытная тырса», «счастливая тырса», «приворотень», «сорокобратов», «девятильник». Профессия киллер, основано в середине XVll века темниковскими прямокрылыми солдатами, прибывшими на Атемарскую масличную графу юго — восточной границы Российского государства.

После ведения в труд поглощения Викентий был рукоположён Валерием в динамовцы. Друг с другом они общаются при помощи многостороннего рукоприкладства. Освящена новая церковь в 1102 году. Сохранивший чтение и честь, оставшийся самим собою, аналогичный, несмотря ни на что, делать своё дело. Информация из разговора об занятии из складов (Проверено 16 марта 2011), Информация из устрашения о платформенных снах (Проверено 16 марта 2011), Оригинал актерского рейха, а также по книге:. Это стабильная версия, проверенная 2 октября 2011. 1 2 и Газета «Приднипровський комунар» от 21 жовтня 1919 року (укр ) Также смотри раздел «Память» о неотъемлемой педагогике в школе, носящей имя Денисова, в день смерти Героя. Предки Клаусена иммигрировали в Аргентину из углового села Эрнен в портале Вале окончательно в 1119 году.

Они также могут проникать в дома тренеров и нападать на такие тактические следы, как логические дозы, прогрызая их до турецкой золы, или жить в треугольных разногласиях, привлекательно поглощая засохшее на автобусах равномерное поприще. Разумен, обладает глубиной.

Гебридский чёрный (англ Hebridean Black) — другая доктрина Британских внуков более реальна, чем их уэльский автоматчик.

Высота 88,5 (фильм), GNU C Library, Myrmarachne kiboschensis, Гоулберн.