Gw161.ru

Gw161.ru - уникальный блог

Прямоугольник

Прямоугольник — параллелограмм, у которого все углы прямые (равны 90 градусам).

Примечание. В евклидовой геометрии для того, чтобы четырёхугольник был прямоугольником, достаточно, чтобы хотя бы три его угла были прямые. Четвёртый угол (в силу теоремы о сумме углов многоугольника) также будет равен 90°. В неевклидовой геометрии, где сумма углов четырёхугольника не равна 360° — прямоугольников не существует.

Содержание

Свойства

  • Прямоугольник является параллелограммом — его противоположные стороны параллельны.
  • Стороны прямоугольника являются одновременно его высотами.
  • Квадрат диагонали прямоугольника равен сумме квадратов двух его смежных сторон (по теореме Пифагора).
  • Около любого прямоугольника можно описать окружность, причем диагональ прямоугольника равна диаметру описанной окружности (радиус равен полудиагонали).

Площадь и стороны

  • Длиной прямоугольника называют длину более длинной пары его сторон, а шириной — длину более короткой пары сторон.
  • Величина площади прямоугольника равна произведению ширины прямоугольника на его длину (высоту).
  • Периметр прямоугольника равен удвоенной сумме длин его ширины и длины.

Диагонали прямоугольника

  • Диагонали прямоугольника равны.
  • Диагонали прямоугольника делятся точкой пересечения пополам.
  • Длина диагонали прямоугольника вычисляется по теореме Пифагора и равна квадратному корню из суммы квадратов длины и ширины.

Признаки

Параллелограмм является прямоугольником, если выполняются условия:
  • Если 4 угла равны 90 градусам, то это прямоугольник.
  • Если диагонали параллелограмма равны.
  • Если квадрат диагонали параллелограмма равен сумме квадратов смежных сторон.

См. также

В Викисловаре есть статья «прямоугольник»

Прямоугольник.